Apache® Spark™ is a fast, flexible, and developer-friendly open-source platform for large-scale SQL, batch processing, stream processing, and machine learning. Users can take advantage of its open-source ecosystem, speed, ease of use, and analytic capabilities to work with Big Data in new ways.
In this short course, you explore concepts and gain hands-on skills to use Spark for data engineering and machine learning applications. You'll learn about Spark Structured Streaming, including data sources, output modes, operations. Then, explore how Graph theory works and discover how GraphFrames supports Spark DataFrames and popular algorithms.
Organizations can acquire data from structured and unstructured sources and deliver the data to users in formats they can use. Learn how to use Spark for extract, transform and load (ETL) data. Then, you'll hone your newly acquired skills during your "ETL for Machine Learning Pipelines" lab.
Next, discover why machine learning practitioners prefer Spark. You'll learn how to create pipelines and quickly implement features for extraction, selections, and transformations on structured data sets. Discover how to perform classification and regression using Spark. You'll be able to define and identify both supervised and unsupervised learning. Learn about clustering and how to apply the k-mean s clustering algorithm using Spark MLlib. You'll reinforce your knowledge with focused, hands-on labs and a final project where you will apply Spark to a real-world inspired problem.
Prior to taking this course, please ensure you have foundational Spark knowledge and skills, for example, by first completing the IBM course titled "Big Data, Hadoop and Spark Basics."
Module 1 – Spark for Data Engineering
Spark Structured Streaming
GraphFrames on Apache Spark
ETL Workloads
Hands-on Lab: ETL for ML Pipelines
Module 2 – Spark ML for Machine Learning
Spark ML Fundamentals
Spark ML Regression and Classification
Spark ML Clustering
Module 3 – Final Project
o Lab: Setup & Practice Assignment
o Project Overview
o Lab: Final Assignment Project
o Project Submission & Grading
Module 1 – Spark for Data Engineering
Spark Structured Streaming
GraphFrames on Apache Spark
ETL Workloads
Hands-on Lab: ETL for ML Pipelines
Module 2 – Spark ML for Machine Learning
Spark ML Fundamentals
Spark ML Regression and Classification
Spark ML Clustering
Module 3 – Final Project
o Lab: Setup & Practice Assignment
o Project Overview
o Lab: Final Assignment Project
o Project Submission & Grading